Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors.

نویسندگان

  • Edmund K Moon
  • Liang-Chuan Wang
  • Douglas V Dolfi
  • Caleph B Wilson
  • Raghuveer Ranganathan
  • Jing Sun
  • Veena Kapoor
  • John Scholler
  • Ellen Puré
  • Michael C Milone
  • Carl H June
  • James L Riley
  • E John Wherry
  • Steven M Albelda
چکیده

PURPOSE Immunotherapy using vaccines or adoptively transferred tumor-infiltrating lymphocytes (TIL) is limited by T-cell functional inactivation within the solid tumor microenvironment. The purpose of this study was to determine whether a similar tumor-induced inhibition occurred with genetically modified cytotoxic T cells expressing chimeric antigen receptors (CAR) targeting tumor-associated antigens. EXPERIMENTAL DESIGN Human T cells expressing CAR targeting mesothelin or fibroblast activation protein and containing CD3ζ and 4-1BB cytoplasmic domains were intravenously injected into immunodeficient mice bearing large, established human mesothelin-expressing flank tumors. CAR TILs were isolated from tumors at various time points and evaluated for effector functions and status of inhibitory pathways. RESULTS CAR T cells were able to traffic into tumors with varying efficiency and proliferate. They were able to slow tumor growth, but did not cause regressions or cures. The CAR TILs underwent rapid loss of functional activity that limited their therapeutic efficacy. This hypofunction was reversible when the T cells were isolated away from the tumor. The cause of the hypofunction seemed to be multifactorial and was associated with upregulation of intrinsic T-cell inhibitory enzymes (diacylglycerol kinase and SHP-1) and the expression of surface inhibitory receptors (PD1, LAG3, TIM3, and 2B4). CONCLUSIONS Advanced-generation human CAR T cells are reversibly inactivated within the solid tumor microenvironment of some tumors by multiple mechanisms. The model described here will be an important tool for testing T cell-based strategies or systemic approaches to overcome this tumor-induced inhibition. Our results suggest that PD1 pathway antagonism may augment human CAR T-cell function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Anti-CD3/CD28 Dynabeads and Allogeneic PBMCs on Expansion of Anti-MUC1 Chimeric Receptor T Cells

Background and purpose: In recent years, immunotherapy using chimeric antigen receptor T cells (CAR T cells) has been considered as a novel and promising treatment for some diseases, especially cancer. The CAR T cell production is a multi-step, complex, time-consuming, and costly process. One of the most important steps in production of CAR T cells is expansion of these cells at appropriate num...

متن کامل

A Chimeric Switch-Receptor Targeting PD1 Augments the Efficacy of Second-Generation CAR T Cells in Advanced Solid Tumors.

Chimeric antigen receptor (CAR)-modified adoptive T-cell therapy has been successfully applied to the treatment of hematologic malignancies, but faces many challenges in solid tumors. One major obstacle is the immune-suppressive effects induced in both naturally occurring and genetically modified tumor-infiltrating lymphocytes (TIL) by inhibitory receptors (IR), namely PD1. We hypothesized that...

متن کامل

Advancing Chimeric Antigen Receptor-Engineered T-Cell Immunotherapy Using Genome Editing Technologies: Challenges and Future Prospects

Chimeric antigen receptor engineered-T (CAR-T) cells also named as living drugs, have been recently known as a breakthrough technology and were applied as an adoptive immunotherapy against different types of cancer. They also attracted widespread interest because of the success of B-cell malignancy therapy achieved by anti-CD19 CAR-T cells. Current genetic toolbox enabled the synthesis of CARs ...

متن کامل

Engineered Jurkat Cells for Targeting Prostate-Specific Membrane Antigen on Prostate Cancer Cells by Nanobody-Based Chimeric Antigen Receptor

Background: Recently, modification of T cells with chimeric antigen receptor (CAR) has been an attractive approach for adoptive immunotherapy of cancers. Typically, CARs contain a single-chain variable domain fragment (scFv). Most often, scfvs are derived from a monoclonal antibody of murine origin and may be a trigger for host immune system that leads to the T-cell clearance. Nanobody is a spe...

متن کامل

Design and development of CAR-T cells for cancer therapy

Introduction: Today, treatment with CAR-T cells is accepted as an effective treatment for blood malignancies. CAR-T cells are autologous T cells that are engineered by gene transfer techniques to express a chimeric antigen receptor (CAR). Despite the promising results and the approval of six CAR-T cell products; these products have not yet been approved for solid tumors. In addition, the high c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 20 16  شماره 

صفحات  -

تاریخ انتشار 2014